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v EU-28

MIHAELA SIMIONESCU

Abstract 
The main objective of this research is to analyse the beta-convergence in European Union 
(EU-28), showing the regional income disparities. There was a faster increase of GDP per 
capita in poor economies in the period from 2001 to 2012. The absolute convergence was 
assessed using the approach based on spatial lag dependence. The rate of convergence 
has a low value of 0.46% for EU-28 during 2001-2012. The catching-up process is mostly 
in EU-28 a national phenomenon. The results of the estimations suggest not significant 
convergence within EU-28 members.
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Abstrakt
Hlavním cílem tohoto výzkumu je analyzovat beta-konvergenci v Evropské unii (EU-28) 
a poukázat na regionální rozdíly v příjmech. V období 2001-2012 byl rychlejší růst HDP 
na obyvatele v chudých ekonomikách. Absolutní konvergence byla hodnocena pomocí 
přístupu založeného na prostorové zpožděné závislosti. V létech 2001-2012 má míra kon-
vergence pro EU-28 nízkou hodnotu 0,46 %. Proces dohánění je v zemích EU-28 většinou 
národním fenoménem. Výsledky odhadů naznačují, že neexistuje významná konvergence 
v rámci zemí EU-28.
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Introduction

Many authors were interested of income disparities in the context of convergence analy-
sis (Barro and Sala-i-Martin (1995), Cuadraro-Roura (2001), Tondl (2001), Baumont et al. 
(2003), Meliciani and Peracchi (2006), Paas and Schlitte (2006), Anagnostou et al. (2008)). 
There are some studies for EU, the research importance being major. For example, Hallet 
(2002) criticized the current that showed that there is a slow regional convergence in Eu-
rope in the last decades. The main determinates of income convergence are considered to 
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be the stylized facts of disparities. Future challenges regarding the policies in Europe are 
presented. Bosker (2009) analysed for Europe the evolution of regional income disparities. 
The disparities in Western Europe regions tend to decrease in time, while a large number 
of regions from Eastern Europe catch up slowly with the Western Europe neighbours. In 
the East part of Europe the specific factors of the countries are more important than the 
regional conditions. Maza, Hierro, and Villaverde (2012) examined the spatial influence on 
the regional income evolution in Europe during 1980-2005. According to mobility index, 
the regional disparities have decreased. The approach based on a new mobility index has 
put into evidence that poor regions that are surrounded by rich ones are more likely to 
become rich than the other poor regions.

The main aim of this study is to evaluate the regional income disparities in the context 
of convergence process in EU-28 in the period from 1995 to 2013. There is a low level of 
regional aggregation, the research using NUTS3 level regions in EU-28. The beta-conver-
gence is analysed in this context, the spatial effects being controlled by the use of spatial 
econometric methods. 

The paper is structured in 4 sections. In the second section there is a description of data 
and methodology related to the convergence analysis and also the recent results regard-
ing the regional income disparities in EU. The third section consists in a presentation of 
beta-convergence analysis considering the problem of spatial dependence in EU regions 
and countries. In the end some conclusions are drawn. 

1	 Data and Methodology

The approach for estimating the regional income convergence is based on the observa-
tions of Sala-i-Martin (1992) that made a distinction between conditional and absolute 
convergence. 

Under the assumption of structurally identical economies, the absolute convergence is 
checked using a regression for economic growth and initial level for certain regions/coun-
tries. Unconditional β-convergence assumes that all economies are structurally identical 
(same steady state). The absolute beta-convergence existence supposes that less devel-
oped countries have a faster catch-up tendency than the developed ones while the con-
ditional beta-convergence supposes that each economy tends to go to its steady state. 
The absolute beta-convergence is present if there is a significant and negative relationship 
between economic growth for income per capita and the initial level of the same indica-
tor. Quah (1996) showed that the conditional convergence can be tested using the club 
convergence concept (the steady state varies across groups of relatively homogenous 
economies). Cuadraro Roura (2001) emphasized that the differences between countries 
regarding legislation, countries policy, tax system have an important impact regarding the 
convergence and regional growth. 

Regional economic developments might underlie spatial dependence or interaction. If 
economic events in neighboring regions are not independent, but influence each other, 
there is spatial dependence. In addition, regional data might have shortcomings such 
as a bad quality due to measurement problems or inadequately defined regional units, 
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what is reflected in spatial autocorrelation. Standard regressions do not account for spa-
tial dependence or autocorrelation thus leading to inefficient inference or even biased 
estimates in case of significant spatial processes. In addition to the use of classical econo-
metric methods presented so far, we therefore refer to models of spatial econometrics in 
this section, which explicitly take account of spatial interaction. The structure of spatial 
interconnectedness is usually imposed by so-called spatial weights matrices (W). Wy, e.g., 
thus displays the spatially weighted average of y in nearby regions. A number of differ-
ent spatial econometric models – as well as combinations of those – can be formulated: 
spatial correlation of the error term in e.g. a spatial autoregressive error model, of the 
endogenous variable itself in a spatial lag model as well as of explanatory variables in 
a spatial cross-regressive model.

The regional beta-convergence is assessed in two variants. The first alternative uses the 
common OLS approach for cross-sections, where the independent variable is the ini-
tial level of income while the dependent one is the growth in income per capita). In the 
second variant dummy variables are introduced to take into consideration the country-
specific effects. The both types of convergence were assessed (absolute and conditional 
convergence). According to Barro (1995) we start from the following model:
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Most of the convergence analyses considered that growth rates are independent across 
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a spatial weight matrix denoted by W. This matrix shows the intensity of spatial depend-
ence and the spatial structure. Ertur and Le Gallo (2003) showed that the spatial weigh has 
a random design. The binary contiguity supposes that elements of matrix wij=1 if the two 
regions (i and j) are within a certain distance or if these regions have a common border. If 
W is the distance based weight matrix, the distance is computed as the squared inverse of 
the best circle distance between the regions’ geographic regions. It is made the assump-
tion that the spatial interaction is null and a critical distance cut-off is used. Le Gallo et al. 
(2003)showed that the functional form of the squared inverse distances is seen as gravity 
function. The rows of the distance matrix are standardized. 
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computed as the squared inverse of the best circle distance between the regions’ geographic 
regions. It is made the assumption that the spatial interaction is null and a critical distance cut-off 
is used. Le Gallo et al. (2003)showed that the functional form of the squared inverse distances is 
seen as gravity function. The rows of the distance matrix are standardized.  
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Moran’s I takes values between -1 and +1, the extreme values indicating the perfect dispersion 
(-1) and perfect correlation (+1). The null value shows random spatial pattern. The Moran 
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I’s statistic values are transformed to Z-scores. At a significance level of 5%, the values 
outside the interval [-1.96; 1.96] imply spatial autocorrelation. 

The spatial autocorrelation presents two forms: nuisance form (restricted to error) and 
the substantive one. 

If the nuisance dependence is ignored, the estimates are inefficient. Therefore, Anselin 
(1988) proposed two types of model specifications estimated using maximum likelihood 
method (ML method). The spatial error model (SEM) is suitable for nuisance form. 
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2	 The Convergence in EU-28

The aggregation level influences the results of regional convergence study. Arbia (2006) 
showed that if different spatial scales are used will generate distinct results. The use of 
large spatial units in constructing the models usually hides problems like spatial autocor-
relation and heterogeneity. 

In this study it was chosen a low aggregation level, because there could be spillover effects 
that are not detected at higher levels as Brauninger and Niebuhr (2005) explained. NUT-3 
level is chosen for EU-28. 

The data is represented by the adjusted GDP per capita for purchasing power standards 
(in PPS), being provided by Eurostat. The data in PPS has the advantage of being adjusted 
for differences in national price levels. 
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Figure 1: Regional GDP per capita levels relative to the EU-28 average
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Source: author’s computations based on Eurostat database

Many regions from Spain, Greece, Finland, Ireland, Croatia, Estonia, Cyprus, Latvia, Lithu-
ania, Hungary, Malta, Poland, Portugal, Slovenia, Slovakia, Czech Republic, Romania and 
Bulgaria had growth rates under the average rate of EU-28. Only few regions from “blue-
banana”, mostly from Netherlands and England, had rates above the average. In the re-
gression the data for Russia were not used.
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Figure 2: Regional GDP per capita disparities and growth in EU-28
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Source: author’s computations based on Eurostat database

The second figure indicates that there are significant GDP per capita disparities between 
EU-28 countries. There was a faster increase of GDP per capita in poor economies. Accord-
ing to the spatial distribution there is a centre-periphery structure. 

The beta-convergence analysis is more suitable for the various regions in EU-28. Fischer 
and Stirbock (2004) identified two convergence clubs represented by rich countries in 
Northern and Central Europe and poor countries of new members of EU plus southern 
periphery in the Western Europe. Feldkircher (2006) found country-specific effects on GDP 
increase in EU. 

The values of coefficient I are highest with a cut-off distance of hundred kilometres. In this 
study we used a critical cut-off distance of 500 km. the three types of models are built: 
classical model using OLS, Spatial Lag Model (SLM) and Spatial Error Model (SEM). The 
Moran’s  I coefficients indicated the existence of relevant spatial autocorrelation of the 
errors. Therefore, this indicator did not provide reliable information regarding the spatial 
dependence. Therefore, LM tests are used to check the form of the spatial autocorrelation. 

The results of the estimations suggest no significant convergence with-in EU-28 members. 
The catching-up process is mostly in EU-28 a national phenomenon. 

Regarding the absolute convergence, the LM tests indicated an option of spatial lag de-
pendence in the EU-28. The estimated rate of convergence was 0.46% in the EU-28. OLS 
tends to be biased, the substantive form of spatial autocorrelation being obvious for the 
data. OLS estimation results indicated absolute convergence at an annual rate of 1.85% 
between 2001 and 2012. The rate of absolute convergence is higher than that based on 
spatial lag model, the auto-correlation being obvious. The rich neighbouring regions tend 
faster to convergence than the poor ones.

In the poor countries a faster convergence speed was observed compared to rich coun-
tries even during the economic crisis. Some countries experienced relatively high mean 
rates of real per capita GDP growth, such as Malta, Bulgaria, Luxembourg, and Romania, 
but most highly developed countries (e.g., Denmark, Netherlands, and Sweden) have been 
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growing at a slower rate on average. The process of real convergence of the Romanian 
economy continued in the years of crisis, with the GDP per capita rate by more than 2 
percentage points above the rate of the European Union in 2009 – 2013.

Conclusions

The issue of whether European regions show convergence in income levels has been a ma-
jor concern in the EU during the last decades and thus has geared a considerable amount 
of research work in the field. From a methodological point of view, a number of related 
econometric concepts were applied and developed. Nevertheless, critical arguments can 
be brought forward even against the most recently applied econometric frameworks.

The spatial approach in the convergence context brought us to the conclusion that there 
is not significant convergence within EU-28 countries. Our results show that ignorance of 
the spatial correlation leads to potentially misleading results. There was a faster increase 
of GDP per capita in poor economies.

Under the assumption of structurally identical economies, the absolute convergence 
is checked using a regression for economic growth and initial level for certain regions/
countries. The rate of convergence was 0.46% in the EU-28. The absolute convergence is 
at an annual rate of 1.85% between 2001 and 2012. The economic context should take 
into account the effects of recent economic crisis that determined an obvious decrease 
in convergence. Surprisingly, in the crisis period the poor countries registered a real con-
vergence surpassing the EU-28 average. The process of real convergence of the Roma-
nian economy continued in the years of crisis, with the GDP per capita rate by more than 
2 percentage points above the rate of the European Union in 2009 – 2013. Moreover, 
Croatia was admitted as member of EU in 2013, evident efforts for achieving the regional 
convergence being observed after 1990. After an initial drop in the late 1990s, the dif-
ference between potential output and actual output narrowed systematically in Croatia, 
and output growth rates have been close to or above the estimated growth in potential 
output since then. 
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Appendix

Figure 3: The results of OLS estimation

Intercept 2.3007 (33.89)*

-0.298(-7.95)*

R-square adjusted 0.4762

AIC 3331.72

Jarque-Bera 94103.06 (prob.=0.00)

Koenker-Bassett test  109.11 (prob.=0.00)

White test 401.33 (prob.=0.00)

Moran’s I 22.42 **

*Significant level of 0.05 level; in brackets there are standard errors
** Significant level of 0.01 level

Figure 4: SLM estimation results
Intercept 2.453 (37.28)**

-0.163(-6.25)**
R-square adjusted 0.5451
AIC 3314.64
LM- test 176.994 (0.00)

** Significant level of 0.01 level

Figure 5: SEM estimation results
Intercept 2.498 (40.23)**

-0.363(-5.03)**
Λ 0.6262 (29.65)**
LM test 540.9586   (0.00)
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Figure 6: Moran´s I
Figure 6: Moran´s I 

 


